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Abstract—X-ray screening systems have been used to safe-
guard environments in which access control is of paramount
importance. Security checkpoints have been placed at the en-
trances to many public places to detect prohibited items such
as handguns and explosives. Generally, human operators are
in charge of these tasks as automated recognition in baggage
inspection is still far from perfect. Research and development
on X-ray testing is, however, exploring new approaches based
on computer vision that can be used to aid human operators.
This paper attempts to make a contribution to the field of object
recognition in X-ray testing by evaluating different computer
vision strategies that have been proposed in the last years. We
tested ten approaches. They are based on bag of words, sparse
representations, deep learning and classic pattern recognition
schemes among others. For each method, we i) present a brief
explanation, ii) show experimental results on the same database,
and iii) provide concluding remarks discussing pros and cons
of each method. In order to make fair comparisons, we define
a common experimental protocol based on training, validation
and testing data (selected from the public GDXray database).
The effectiveness of each method was tested in the recognition of
three different threat objects: handguns, shuriken (ninja stars)
and razor blades. In our experiments, the highest recognition rate
was achieved by methods based on visual vocabularies and deep
features with more than 95% of accuracy. We strongly believe
that it is possible to design an automated aid for the human
inspection task using these computer vision algorithms.

Index Terms—Object categorization; object recognition; ob-
ject detection; implicit shape model; deep learning; sparse
representations; X-ray testing; baggage screening; threat objects.

I. INTRODUCTION

Baggage inspection using X-ray screening is a priority task
that reduces the risk of crime, terrorist attacks and propagation
of pests and diseases [1]. Security and safety screening with
X-ray scanners has become an important process in public
spaces and at border checkpoints [2]. However, inspection
is a complex task because threat items are very difficult to
detect when placed in closely packed bags, occluded by other
objects, or rotated, thus presenting an unrecognizable view
[3]. Manual detection of threat items by human inspectors
is extremely demanding [4]. It is tedious because very few
bags actually contain threat items, and it is stressful because
the work of identifying a wide range of objects, shapes and
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substances (metals, organic and inorganic) takes a great deal
of concentration. In addition, human inspectors receive only
minimal technological support. Furthermore, during rush hour,
they only have a few seconds to decide whether a bag contains
any threat item or not [5]. Since each operator must screen
many bags, the likelihood of human error becomes consider-
able over a long period of time even with intensive training.
The literature suggests that detection performance is only
about 80-90% [6]. In baggage inspection, automated X-ray
testing remains an open question due to: i) loss of generality,
which means that approaches developed for one task may
not transfer well to another; ii) deficient detection accuracy,
which means that there is a fundamental tradeoff between false
alarms and missed detections; iii) limited robustness given that
requirements for the use of a method are often met for simple
structures only; and iv) low adaptiveness in that it may be
very difficult to accommodate an automated system to design
modifications of different specimens.

There are some contributions in computer vision for X-ray
testing such as applications on inspection of castings, welds,
food, cargos and baggage screening [7]. For this work, it is
very interesting to review the advances in baggage screening
that have taken place over the course of this decade. They
can be summarized as follows: some approaches attempt to
recognize objects using a single view of mono-energy X-ray
images (e.g., the adapted implicit shape model based on visual
codebooks [8] and adaptive sparse representations [9]) and
dual-energy X-ray images (e.g., Gabor texture features [10],
bag of words based [11] [12] and pseudo-color, texture, edge
and shape features [13]). More complex approaches that deal
with multiple X-ray images have been developed as well. For
the recognition of regular objects from mono-energy images,
methods like data association [14] [15] and active vision [16],
where a second-best view is estimated, have been explored.
In the case of dual-energy imaging, visual vocabularies and
SVM classifiers have been used, as shown in [17]. Progress
also has been made in the area of computed tomography.
For example, in order to improve the quality of CT images,
metal artifact reduction and de-noising [18] techniques were
suggested. Many methods based on 3D features for 3D object
recognition have been developed (see, for example, RIFT and
SIFT descriptors [19], 3D Visual Cortex Modeling 3D Zernike
descriptors and histogram of shape index [20]). There are
contributions using known recognition techniques (see, for
example, bag of words [21] and random forest [22]) as well.
As we can see, the progress in automated baggage inspection is
modest and very limited compared to what is needed because



Figure 1. Problems in recognition of a gun: a) occlusion, b) self-
occlusion, c¢) noise, d) wrong acquisition.

X-ray screening systems are still being manipulated by human
inspectors. Automated recognition in baggage inspection is
far from perfect given that the appearance of the object of
interest can become extremely difficult to comprehend due to
problems of (self-) occlusion, noise, acquisition and clutter
among others (as illustrated in Fig. 1). Furthermore, the large
variability within an object sample depending on its points
of view (e.g., top view and frontal view of a gun are very
different as shown in Fig. 2).

The main difference between X-ray and photographic (op-
tical) imaging is that an optical image is formed by light
reflecting from an object (giving information about its surface),
whereas an X-ray image is formed by irradiating the object
with X-rays that pass through the object. The X-rays are
attenuated according to absorption’s law and the density of the
structures of the object (giving information about its internal
structure) [7]. Thus, an X-ray image consists of shadows from
transparent layers that are superimposed and overlapped. In
case an object that has a dense material, only its silhouettes
are captured. On the other hand, in cases of an object that has
relatively lesser dense material in presence of other objects,
the image of the structure is so transparent that the objects
behind or in front of it may be captured as well [23].

Despite these main differences, object recognition using
optical images (in case the object to be recognized can be
captured by an optical imaging system) and object recognition
using X-ray imaging (in case the object to be recognized can
be captured by an X-ray imaging system) share many similar
problems, such as perspective imaging, geometric distortion,
pose problems, (self—)occlusion, noise and large intra-class
variability among others. For this reason, we believe that
algorithms based on modern computer vision techniques on
optical images can be used for this general recognition task
in X-ray testing. In addition, one could take advantage of the
promising advances that have occurred in recent years in many
computer vision applications with optical images, especially in
object recognition [24].

3D object recognition from 2D images is a very complex

Figure 2. Large variability within a gun: some X-ray images of the
same gun in different poses.

task in computer vision in general, not only with X-ray images
but also with conventional photographic images, given the
infinite number of viewpoints, different acquisition conditions,
and objects that are deformable, occluded or embedded in
clutter [25]. In certain cases, automated recognition is possible
through the use of approaches focused on obtaining highly
discriminative and local invariant features related to lighting
conditions and local geometric constraints (see, for example,
[26] for a good review and evaluation of descriptors including
the well-known SIFT [27] and SURF [28] features) or texture
features (see for example [29]). A test object can be recognized
by matching its invariant features to the features of a model.
Over the past decade, many approaches have been proposed in
order to solve the problem of 3D object recognition. Certain
approaches focus on learning new features from a set of
representative images (see, for example, visual vocabularies
[30], implicit shape models [31], mid-level features [32],
sparse representations [33], and hierarchical kernel descriptors
[34]). For instance, Fisher Vectors [35] and Vector of Locally
Aggregated Descriptors (VLAD) [36] on SIFT features has
been used successfully in recognition problems. In addition,
sparse representation has been widely used in computer vision
[37], [38]. In many computer vision applications, under the
assumption that natural images can be represented using sparse
decomposition, state of the art results have been significantly
improved. However, these methods may fail when the learned
features cannot provide a good representation of viewpoints
that have not been considered in the representative images.
Additionally, some approaches include multiple view models
(see, for example, an interconnection of single-view codebooks
across multiple views [39], a learned dense multiple view
representation by pose estimation and synthesis [40], a model
learned iteratively from an initial set of matches [41], a
model learned by collecting viewpoint invariant parts [42], 3D
representations using synthetic 3D models [43], and a tracking-
by-detection approach [44]). These methods may fail, however,
when objects have large intra-class variation. On the other
hand, object recognition can be improved when color imaging
(RGB) is used in conjunction with 3D sensing technologies
to include depth images (D), as shown in some approaches
that use RGD-D sensors in [45]-[47]. Nevertheless, how to
effectively combine multi-modal information (color, texture,
appearance, shape and geometry) remains an open problem
[45]. Other applications that include 3D information can be
found in inspection problems (see [48] that uses a laser range
finder camera).

In recent years, ‘deep learning’ has been successfully
used in image and video recognition [49], [50]. The key
idea is to replace handcrafted features with features that
are learned efficiently using a hierarchical feature extrac-
tion approach. There are several deep architectures such as
deep neural networks, convolutional neural networks, energy
based models, Boltzmann machines, deep belief networks,
deep residual learning among others [50], [S1]. Convolutional
neural networks (CNN), which were inspired by a biological
model [52], has been established as a very powerful method
for image recognition [53]. CNN replaces feature extraction
and classification with a single neural network. CNN maps



an input image x on an output vector y = f(x), where
function f can be viewed as a sequence of convolutional func-

tions fq,--- fr, i.e., linear 2D filters. The functions contain
parameters w = (wy,---wy,) that can be discriminatively
learned from example data (x;,y;), for i = 1,---n, so

that ) ¢(f(x;, w),x;) — min, where £ is a loss function.
This optimization problem can be solved using the back-
propagation approach [54].

This paper attempts to make a contribution to the field
of object recognition in X-ray testing by evaluating different
computer vision strategies that have been proposed in the
last years. We tested ten approaches. They are based on bag
of words, sparse representations, deep learning and classic
pattern recognition schemes among others. For each method,
we present i) a brief explanation, ii) relevant references for
further information, iii) experimental results on the same
database, and iv) concluding remarks discussing pros and
cons. In order to make fair comparisons, we define a common
experimental protocol based on training, validation and testing
data (selected from the public GDXray [55] database). The
effectiveness of each method was tested in the recognition of
three different threat objects: handguns, shuriken (ninja stars)
and razor blades.

The rest of the paper is organized as follows: in Section
II, the computer vision methods used in our experiments are
briefly explained. In Section III, the experimental results are
presented. Section IV concludes the paper.

II. COMPUTER VISION METHODS

In this Section, we describe the computer vision techniques
that we use for our X-ray testing experiments. Some of them
have been developed by integrating well-known computer
vision algorithms (see Sections II-A and II-B). Some of them
have been already tested on X-ray images (see Sections II-C
and II-D). Some of them are based on deep learning techniques
(see Section II-E). Finally, we include some classic methods
in computer vision as baseline (see Section II-F).

The task of each method is to recognize the object that
is present in a cropped X-ray image. To this end we use
labeled X-ray images from the database GDXray [55] for
training and for testing purposes (see examples in Figures
3 and 4 respectively). In our experiments, there are three
classes: Gun, Shuriken and Blade (for handguns, ninja stars
and razor blades respectively). We use an additional negative
class (called Others) for training purposes in which none of
the mentioned objects are present.

The explanations given in this Section describe each
method in two steps: learning and testing. In the first step, the
algorithm learns a model from training images in a supervised
way (meaning the labels of the class of each training image
are known). In the second step, the trained algorithm is tested
on new X-ray testing images that have not been used in the
previous step. In order to measure the performance of the
designed algorithm, the predicted and annotated labels are
compared’.

'In our experiments, we use an additional set of images for validation. This
set is used to tune the parameters of the model only.

Figure 3. Some training X-ray images used in our experiments. Each
row represents a labeled class (handguns, shuriken, razor blades and others
respectively).

o~

Figure 4. Some testing X-ray images used in our experiments. Each row
represents a labeled class (handguns, shuriken, razor blades and others
respectively).

A. Bag of Words (BoW)

Bag of words model is a well-known methodology that has
been widely used in the computer vision community on optical
images [56] and X-ray images [12]. This methodology com-
monly achieves a high performance by reducing the amount
of features to just the most representatives ones.

Learning: In this stage, we design three independent binary
classifiers (for the target classes: Gun, Shuriken and Blade).
In order to reduce the noise, the X-ray images are filtered
using a Gaussian low-pass-filter. Afterwards, SIFT keypoints
are detected [27]. SIFT descriptors of 128 elements and LBP
(rotation-invariant) features of 36 elements [57] are extracted



centered in the location of the SIFT keypoints. For LBP
the size of the window was 2s X 2s pixels, where s is
the scale determined by SIFT. Two visual dictionaries are
defined using K-means with Euclidean distance [58]: one for
SIFT descriptors and another for LBP features, in which the
centroids of the clusters, i.e., the codewords, are stored in
Xsrrr and X pp respectively. Thus, the extracted features
(SIFT and LBP) are quantized into the corresponding nearest
visual word of Xg;pr and Xppp. Each training image is
represented by the concatenation of two histograms of visual
words (hgrrr and hypp) that are computed by binning the
quantized visual words. Finally, a Random Forest classifier
[59] is trained for each target class in which training images
of the class Others are to be considered.

Testing: Similarly to training stage, a concatenated histogram
(from hg;pr and hypp) is computed for the testing image.
The histogram is used as inputs of the three Random Forest
classifiers. A score to each possible class is obtained, and the
predicted class is the one with the highest score.

B. KNN based in sparse reconstruction object recognition
(Sparse KNN)

In this Section we describe ‘Sparse KNN’, a new method
for X-ray testing based on sparse representations.
Learning: It consists of five steps. 1) For each image of
training set, the object is segmented using an adaptive K-
means clustering for grayscales images [60] and morpholog-
ical transformations. This generates a mask in which SIFT
keypoints [27] are extracted (obtaining matrix F; ; of 128 xr;
elements, where ¢ is the number of the class, for : = 1...4,
and r; is the number of keypoints in all training images of
class 7). The label of each extracted SIFT descriptor is stored
in vector dyqin (With 7 = > 7; elements). 2) For each target
class j = 1,2,3, an offline feature selection is done using
SFS [61], using the selected class j against all other, this is
using all features with label d¢.4;, = 7 against features with
label dyqin # [, and using as criterion method KNN with
k =5 and selecting s = 50 (from 128) features in each case
(obtaining matrix F'5 ; ; of 50 X r; elements, this corresponds
to the features for 7 class using SFS feature selection for j
class). The idea behind this feature selection, is mainly, to
deal with our particular occlusion, selecting only gradients
corresponding to the object and discarding background. 3)
We calculate alpha feature, « = d/(wh) where d is the
distance to the center of the image, w is image width and h
the height, maintaining keypoints relative position (obtaining
matrix F'3; ; of 51 x ;). 4) For each matrix F3; a K-means
algorithm [58] is calculated, then, the centroids of the clusters
are used as our features and stored in a feature matrix F ; ; of
51 x¢;, where ¢; is the number of centroids for class 7; with this
we reduce the dimensionality from duplicated or very similar
keypoints. 5) For each class 7 the dictionary D; is constructed
as the concatenation of the resultant features matrices in step
four, then D; = [F4;,1 Fa,;2 F4,3]. Finally, label vector
dcipqin,: for features in D;, is calculated using the labels
obtained from step four.
Testing: In this stage, for testing image I, feature extraction
does not include object segmentation, extracting SIFT points

directly from the image, selecting features with SFS and
adding o feature, then, for each y; vector resultant a vote is
calculated as follows: A y; sparse reconstruction is made. For
this, first, with D; we find the sparse representation vector x
of y;, then, the sparse reconstruction y; is calculated with D;
and x as explained in [62]. This sparse reconstruction includes
information from one, two or many classes. Then, a threshold
over the sparsity concentration index (SCI) is computed in
order to evaluate how spread are its sparse coefficients [63],
so the method can decide whether to continue processing the
vector or classify it as the class Others. If the vector is not
discarded, its vote is calculated normalizing the output of a
KNN classifier trained with D;. Using the closest distance to
a neighbor (k is not necessarily 1), we use a distance threshold
dg for each class to determine if the sample is close enough
to his neighbor or too far to take a clear decision, and as
consequence, discarding this from votes. Finally, the predicted
class will be selected as the one with the higher votes. Then,
a threshold for the maximal distance dj is calculated by
comparing this parameter with the standard deviation of the
votes sample and used to detect untrusted set of votes, in witch
case, I, is classified as Others class. Soft voting algorithm is
shown in algorithm 1 in which 7 = 4 means the class Other.
In order to show the effectiveness of some modules our
proposed SparseKNN, a baseline method called SparseKNN*
was defined. This method corresponds to SparseKNN but
excluding the SFS phase, therefore having a resultant feature
vector of 129 dimensions (128 from SIFT and alpha feature);
and using a binary voting system, where votes are ‘1’ or ‘0’
depending if it is classified or not as the given classifier class.

Algorithm 1 Soft-voting Classification

for all 5 do

for all class i # 4 do

votes(i) = 3, do,; — distances(§;, 1)

if std(votes) < dy then

predictedClass(ly) < 4
else

predictedClass(I,) < max(votes)

C. Adaptive Implicit Shape Model (AISM)

Adaptive Implicit Shape Model (AISM) was presented orig-
inally in [8] for object recognition in baggage screening. AISM
is based on the well-known ‘Implicit Shape Model’ (ISM)
method [64] which was developed for recognition of object
categories such as cars, people and animals in photographs.
AISM adapted this methodology in order to detect object
categories in single X-ray images that were acquired using
an X-ray system.

Learning: The training stage is based on the creation of a
visual vocabulary using keypoints and local visual descriptors.
In this stage, a target object is represented using a visual
vocabulary of parts (category-specific appearance codebook).
Keypoints and their local visual descriptors are extracted
automatically from all training images of the target object
using the well-known SIFT approach [27]. Thus, an object



category is characterized by estimating a visual vocabulary of
the object parts and a measurement of their spatial distribution.
Testing: In the testing stage target objects are detected by
searching similar visual words and similar spatial distributions.
More details can be found in [8].

D. Adaptive Sparse Representations (XASR+)

An object recognition approach that has been tested in
baggage screening called Adaptive Sparse Representation
(XASR+) was proposed in [9].

Learning: In the training stage, for each object of training
dataset, many patches are extracted from its X-ray images in
order to construct representative dictionaries. Each patch is
described using some feature (e.g., grayvalues, local binary
patterns (LBP) [57], SIFT [27], etc.). In our experiments, we
use as descriptor a combination of SIFT and LBP (rotation
invariant version). A stop-list is used to remove very common
words of the dictionaries [30].

Testing: In the testing stage, many test patches of the testing
image are extracted, and for each test patch a dictionary is
built concatenating the ‘best’ representative dictionary of each
object. Using this adapted dictionary, each test patch is classi-
fied following the Sparse Representation Classification (SRC)
methodology [63]. Finally, the testing image is classified by
patch voting. Thus, XASR+ is able to deal with less con-
strained conditions including some contrast variability, pose,
intra-class variability, size of the image and focal distance. See
more details in [9].

E. Deep Learning

Motivated by the tremendous success of deep learning,
specially the convolutional neural net (CNN), as we mentioned
in Section I, we present a strategy based on deep features
(that are able to deal with noisy background) and a nearest
neighbor classifier (that is able to deal with the potential risk
of overfitting on the GDXray dataset).

Learning: Training CNN models from scratch with our own
data did not yield good results. The models were found to be
strongly overfitted on the training data, heavily biased towards
the negative Others class. This can be attributed to the disparity
in the distribution of the data samples among the four classes
in training and the low number of available X-ray images.
The strong bias towards the Others class resulted from the
fact that it contained more than half of the image samples in
the training set. The other approach we tried was to fine tune
the CNN models by initializing training with a set of weights
transferred from an already converged state of the same model,
trained on the much larger ImageNet dataset [24]. However,
this approach failed to overcome the problem of overfitting
as well. Since training the networks with our own data did
not yield beneficial results, we decided to use the trained
CNN models as generic feature extractors instead. Thus, we
used a CNN model that was previously trained with a large
and highly-variable collection of (optical) images. Particularly,
we use a CNN trained with the ImageNet dataset. We then
take the responses of one of the hidden layer of the CNN
model to be considered as the feature vector in our problem.

To this end, we evaluate the two most popular CNN models
related to ImageNet: AlexNet [53] and GoogleNet [65]. In our
experiments, we use the same trained CNN models proposed
by the authors of AlexNet and GoogleNet?.

Testing: The testing stage is very simple. Considering the
high variability between training and testing dataset, trying
to train a discriminative model may produce an overfitting
effect. Therefore, instead of using a discriminative model we
propose to use a simple nearest neighbor classifier (KNN).
That means, that the label of an input image is the label of
its nearest neighbor in the training dataset. To compute the
nearest neighbor we could use the Euclidean distance (Ls).
However, using this kind of distance may produce a bursting
effect. That is, the final distance between two feature vectors
can be biased by a few dimensions with high differences. To
reduce this effect, we use the Hellinger function [66] instead of
the standard L, function. This can be achieved if we normalize
the feature vector taking the square root of each feature value
and then transforming the whole vector to the unit. Therefore,
before computing distances between feature vectors, we apply
a square root normalization on each vector. Thus, in testing
stage, deep features are extracted from the testing image and
they are classified using KNN.

F. Baseline Methods

In this Section, we describe briefly three classic computer
vision methods that can be used for this task: SVM, AdaBoost
and SRC. They are uses as baseline methods in order to
compare the performance. Four these three classifiers we
follow the same methodology:

Learning: SIFT features are extracted for each image in
training set, then with these features labeled, one model for
each class is trained.

Testing: In testing stage, for each testing image SIFT key-
points are extracted, each keypoint is then classified used the
trained model. These classifications are used as votes and with
a threshold we determine the predicted class of the testing
image.

III. EXPERIMENTAL RESULTS

In this Section, we present the evaluation protocol and the
implementation details of each of the computer vision methods
explained in previous section. We also report and discuss the
achieved results.

A. Experimental protocol

In our experiments, there are three objects: handguns,
shuriken (ninja stars) and razor blades. Each category of ob-
jects defines a class (Gun, Shuriken and Blade). Furthermore,
there is a fourth class called Other for other objects and
background. All X-ray images used in our experiments belong
to the G]D)Xray3 database [55]. As shown in Table I, there are

2The models are available at
Model-Zoo.

3GDXray is a public database for X-ray testing with more than 20000
images. The X-ray images included in GDXray can be used free of charge,
for research and educational purposes only. Available at http://dmery.ing.puc.

cl/index.php/material/gdxray/.

https://github.com/BVLC/caffe/wiki/
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Table 1
IMAGES OF GDXRAY [55] USED IN OUR EXPERIMENTS

Set Gun  Shuriken Blade Others
Training  Series B0049 B0050 B0051 B0078
Images  1-200 1-100 1-100 1-500
Validation  Series B0079 B0080 B0081 B0082
Images 1-50 1-50 1-50 1-200
Testing  Series B0079 B0080 B0081 B0082
Images 51-150 51-150 51-150  201-600

three different sets of images: training, testing and validation
sets. For training, X-ray images of GDXray series B0049,
B0050, B0O051 and B0078 must be used for classes Gun,
Shuriken, Blade and Others respectively. For validation, in case
that a method has some parameters to be tuned, it is allowed
to use the first 50 images of GDXray series BO079, B0O080 and
B0081 for Gun, Shuriken and Blade respectively and the first
200 images of folder BOO82 for Others. For testing, the last
100 images of GDXray series B0079, BO080 and B0081 for
Gun, Shurikena nd Blade respectively and the last 400 images
of folder BOO82 for Others have to be used.

The GDXray dataset is specially challenging due to the
high intra-class variability between training and testing images
of positive classes (see some examples for guns, shuriken and
razor blades in Figures 3 and 4 for training and testing respec-
tively). Indeed, training images of positive classes contain just
the object with a clean background. In contrast, testing images
corresponding to the these classes show a noisy background
that may allow any discriminative model to classify them as
the class Others.

In our experiments, we define two recognition tasks: i) four-
class classification and ii) detection of three threat objects.

1) Four-Class classification: In the first problem, we have
to design a classifier that is able to recognize the four men-
tioned classes: 1) Gun, 2) Shuriken, 3) Blade and 4) Others.
We define m = 4 as the number of classes. The classifier
has to be trained using the trained data. The parameters of
the classifier (if any) can be tuned using the validation only.
The performance of the method must be reported using the
testing data as follows: The elements of the m x m confusion
matrix are defined as C(i,j) fori=1...mand j=1...m,
where C'(4, j) means the number of images of class ¢ (in the
testing data) classified as class j. The accuracy of each class
is defined as:

- C(i,1)
ML)

The total accuracy is the average:

1 m
n=@;m )

The m + 1 values 71 ...n,, and 1 must be reported.

2) Detection of three threat objects (three binary classi-
fiers): In the second problem, we have to design three different
detectors (binary classifiers) : 1) one for Gun, 2) one for

x 100 (1)

Shuriken and 3) one for Blade. For each detector there is a
target (e.g., Shuriken for second detector). Each detector can be
understood as a 2-class problem: one class (called the positive
class) is the target, and the another class (called the negative
class) is the rest. Similar to previous problem, training data
must be used to train the detectors, validation data can be
used to tune the detectors’ parameters (if any), and testing
data have to be used to measure the final performance of the
detectors. For the second detector (i.e., Shuriken), for example,
in our database according to Table I, there are 100 images
for the positive class and 200+100+500=800 images for the
negative class that can be used for training purposes. In this
example, the validation can be performed using 50 images for
the positive class and 50+50+200=300 images for the negative
class. Finally, for the testing of the second detector, there 100
images for the positive class and 100+100+400 for the negative
class. The performance must be given in terms of precision—
recall (Pr, Re) considering all images of the testing set. The
variables precision and recall are defined as follows:

TP
" TP+FP

TP

P -
" Re= Fp T FN

3)

where:

o True Positive (17'P): number of targets correctly classified.

e True Positive (T'N): number of non-targets correctly
classified.

« False Positive (F'P): number of non—targets classified as
targets. The false positives are known as ‘false alarms’
and ‘Type I error’.

o False Positive (F'N): number of targets classified as no-
targets. The false negatives are known as ‘Type II error’.

Ideally, a perfect detection means all existing targets are
correctly detected without any false alarms, i.e., Pr = 1 and
Re =1.

The values (Pr, Re) that maximizes the score ) =
v Pr x Re must be reported. As average performance, we
define

3
1
p=§;Qi><100 4)

Table II
PERFORMANCE FOR FOUR-CLASS PROBLEM

Gun  Shuriken Blade Others Total

m 72 Uk N4 n
BoW  97.0 92.0 82.0 87.0 90.0
Sparse KNN  97.0 99.4 91.9 90.6 94.7
Sparse KNN* 93,0 93.2 87.3 83.4 89.2
AISM  96.0 94.0 99.0 92.5 95.4
XASR+  91.0 99.8 71.0 88.3 87.5
GoogleNet  100.0 100.0 95.0 90.0 96.3
AlexNet  99.0 100.0 72.0 93.5 91.2
SVM 910 86.0 86.0 79.0 85.5
AdaBoost  87.0 86.0 84.0 60.0 79.3
SRC  79.0 83.0 52.0 80.0 73.5




where 7 = 1...3 means the classes Gun, Shuriken and Blade
respectively.

B. Results and discussion

In this section, we present the results obtained using the
ten methods outlined in Section II in two recognition tasks:
the four-class classification problem (see Section III-Al) and
the problem of detection of three threat objects (see Section
III-A2). The results are summarized in Tables II and III
respectively.

In the first recognition problem, the idea was to design a
unique classifier that is able to recognize four classes (Gun,
Shuriken, Blade and Others). From Table II, we can see that
there are five methods that achieved an accuracy n > 90%
(see definition in equation (2)). It is clear, however, that an
accuracy around 95% or more is possible: see rows GoogleNet
(96.3%), AISM (95.4%) and SparseKNN (94.7%). Moreover,
these three computer vision techniques were able to recognize
more than 90% of each class in the testing images. It is worth
noting that the best performance was achieved by GoogleNet,
an algorithm based on a convolutional neural net (CNN). This
result is very interesting because, as we explained in Section
II-E, the CNN model had been trained with optical images
(and not with X-ray images). It can be noted that the features
provided by GoogleNet seem to be better than those obtained
from AlexNet. This behavior can be attributed to the fact
that GoogleNet was thought to address the object detection
problem while AlexNet, as simpler model, that was thought
just for classification. Hence, GoogleNet could be more robust
to noisy backgrounds which is the main problem of this work.
Nevertheless, as we can see in Table 11, there are two methods
that were able to achieve similar results to deep learning:
Sparse KNN and AISM. They were better than AlexNet, and
respectively only 1.6% and 0.9% lower than GoogleNet.

In the second problem, the aim was to design three different
and independent detectors: one for Gun, one for Shuriken and
another for Blade. In Table III, precision and recall for each
detector and the average performance p (see definition in (4))
are shown. Similarly to four-class problem, we can see that
there are several methods with a low performance. In addition,

Table III
PRECISION & RECALL FOR EACH DETECTOR

Gun Shuriken Blade
Pr Re Pr Re Pr Re p

Total

Bow 065 084 1.00 092 100 097 894

Sparse KNN 099 097 1.00 099 097 094 977
Sparse KNN* 092 1.00 1.00 093 099 088 952
AISM 097 097 095 09 099 099 972
XASR+ 092 088 069 100 078 097 86.7
GoogleNet 0.83 1.00 099 100 0.84 095 933
AlexNet 085 099 1.00 1.00 090 0.72 90.7
SVM 090 099 100 085 051 100 86.0
AdaBoost 1.00 0.87 1.00 086 098 0.87 928
SRC 075 1.00 080 1.00 045 098 80.8

methods based on deep learning achieved between 90% and
94% only. Nevertheless, there are three methods that achieved
a high performance (p > 95%): see rows SparseKNN (97.7%),
AISM (97.2%) and SparseKNN* (95.2%). Probably, the rea-
son of this resulting performance is because the mentioned
models have been learned from X-ray images (and not from
optical images as in case of deep features).

If we analyze the performance of both experiments together,
we can compute the average of the cumulative performance
of each method (average of last column of Table II and
last column of Table III). We can classify our methods
into three groups by this analysis: low, moderate and high
performance methods. It is clear that baseline methods like
SVM, AdaBoost and SRC belong to the first group because
they achieved around 85% or lower. In the second group,
where the performance was around 90 £ 3%, there were the
methods Sparse KNN*, AlexNet, BoW and XASR+. Finally,
in the third group, where the performance was around 95%
or higher we have: AISM (with 96.3%), Sparse KNN (with
96.2%) and GoogleNet (with 94.8%). In both experiments, we
can observe that modern computer vision techniques based
on learned representations, such as visual dictionaries, and
deep features are able to deal with recognition problems in
baggage inspection using X-ray images. This result is also
consistent with other recognition problems using computer
vision in optical images, where the best performance has been
achieved by this kind of approaches.

We believe, that a convolutional neural network trained with
a very large number of X-ray images (instead of optical images
like GoogleNet and AlexNet) would lead to better results in
X-ray testing. Moreover, as Section III-C shows, it is worth
mentioning that the lowest computational time of testing stage
was achieved by the deep learning methods.

C. Practical considerations

In this Section, we report the implementation details of

each method explained in Section II. The computational time
depends on the software implementation and the computer
architecture. In order to present a reference, in this paper
we give the details of the computational time for four-class
problem.
Bag of words: BoW model uses 4 parameters for
each target class (Gun, Shuriken and Blade): 0 =
(0, Ksirr, KL BP, Niree). Parameter o is the standard devi-
ation of the Gaussian low-pass-filter. Parameters Kg;r7 and
K pp are the number of clusters of the visual vocabularies
Xsrrr and Xppp respectively. Finally, parameter ng,e. is
the number of trees in the forest. Each parameter was tuned
using exhaustive search in order to maximize the performance
metrics in the validation set (for ¢ = 0,1...8; Kgipr =
100,200...400; Krppp = 50,100...200; and ngree =
1000, 2000. . . 4000) . The individual best parameters for each
classifier were 6 = (8,100, 200, 2000), (6, 200, 100, 4000) and
(2,400,100, 2000) for Gun, Shuriken and Blade respectively.
The Random Forest uses Gini impunity [67] as homogeneity
metric. The computational time was 30 minutes for the training
stage and about 1s per testing image on AMD FX(tm)-6300
Six Core, 3.5 GHz, 8GB RAM.



KNN based in sparse reconstruction object recognition:
Main part of this method’s accuracy relies on parameter
and thresholds tuning. For SFS, s was selected by visual
inspection in the curves J,,4; Vs ns of each classifier and in
order to maintain vectors of same size and a fair comparison
among the results, we decided to use s as the same for each
classifier. k is selected as the same k in our classifier, and
this is done by exploration from k£ = 1,3,5,7,9. We use
the SIFT implementation of from VLFeat library [68]. All
SIFT parameters are used as default except PeakThresh,
where PeakThresh = 1. This is to avoid selecting keypoints
that are actually noise in the image. The threshold for the
SCI (8scr) was tuned using Ogscr € [0, 1] using 1 decimal
precision. All distance threshold where iterated in the interval
[10000, 100000] with jumps of 10000 in a for loop, parameters
for each class where selected at the same time, is meaningful
to mention that the value for the Others class is 0, meaning
that none y; classified as Others is affected. The dy parameter
is also iterated using dy € [0, 100000] using intervals of 100.
Finally, selected parameters of this section are: s = 50, k = 5,
Oscr = 0.9% the distance thresholds for each target class
where dg; = 50000, dgo = 80000, and dy 3 = 90000,
for Gun, Shuriken and Blade respectively and the threshold
for the maximal distance was dy = 21700. As for methods
implementations we use [60] for adaptive K-means, for sparse
reconstruction we use SPAMS library from INRIA [62] and
all other implementation are taken from Balu Toolbox [69].
For Sparse KNN and Sparse KNN*, the computational time
was respectively 240 and 220 min for the training stage and
about 20s and 25s per testing image on a Mac Mini Server
OS X 10.10.1, processor 2.6 GHz Intel Core i7 with 4 cores
and memory of 16GB RAM 1600 MHz DDR3.

Adaptive Implicit Shape Model: In training stage, an implicit
representation of each object is obtained, i.e., each object
has different parts representing its shape. To achieve this,
we used an agglomerative clustering, which clusters similar
parts. The clustering process stops when a certain number
of clusters is obtained. In our implementation, better results
were achieved when the pre-defined number of clusters for
each object category was set to 400. Then, the structure called
“occurrence” is calculated for each cluster. The occurrence of
cluster p, denoted as set Z,, for p = 1, ..., 400, contains all of
the keypoints of the training images whose SIFT-descriptors
are similar enough to the center of mass of each cluster. In
step of testing, it was necessary to tune several parameters
which are different threshold values and window sizes. See
details in [8]. In this work we have tuned the threshold values
using exhaustive search, in order to maximize the performance
metrics in the validation set. Parameter 6, is the minimum
distance threshold allowed between all keypoints f}, stored in
the training database and the keypoints test image f;, 0p is
the minimum number of keypoints of the same pose enclosed
in the sub-windows Wg, 6,, is the minimum number of
candidates encloses in the sub-window W,,, (whose size is not
predefined), and if no sub-window W,,, meets this condition,
no potential target object is detected, W is the final size of

4All SCI thresholds turn out to be the same result.

the detection window. Where 6,, = (50.000, 30.000, 50.000),
0 =(1,3,5), 60, =&, 11, 1), Wg = (175 x 175, 150 x
150, 100 x 100) [pixels] and Wr = (800 x 1.300, 820 x 820,
200 x 360) [pixels] for Gun, Shuriken and Blade respectively.
The computational time for the training stage was 27 min,
and about 8s per testing image on an Intel(R) Core(TM) i7-
35370 CPU @ 2.00GHz with 4 cores and memory RAM of 8
GB. The algorithms were implemented in MATLAB R2014a,
64-bit (win64).

Adaptive Sparse Representations: XASR+ has six parame-
ters, 0 = (Q, R, m, a, w, N,). Parameters () and R are the
number of parent and child clusters respectively used in the
dictionaries. Parameter m is the number of patches extracted
in each X-ray image. Parameter o weights the appearance
description and location of the patch. Parameter w is related
to the size of the patch. Finally, N, means the number
of visual words of the dictionary that is used to construct
the stop-list. See details in [9]. Each parameter was tuned
using exhaustive search in order to maximize the performance
metrics in the validation set (for Q = 20,40...120; R =
20,40...120; m = 60,80...200; a = 1,2...12; w =
12,16...32; N, = 0,100,...500).The individual best pa-
rameters for each classifier were 6 = (80, 40, 80, 10, 16, 400),
(80,40, 100, 10, 20, 400) and (80, 40, 60, 10, 12, 200) for Gun,
Shuriken and Blade respectively. The computational time was
16 min for training stage and about 0.2s per testing image on
a Mac Mini Server OS X 10.10.1, processor 2.6 GHz Intel
Core i7 with 4 cores and memory of 16GB RAM 1600 MHz
DDR3.

Deep learning: In order to provide robustness to rotations,
we augmented the dataset by a factor of 12, producing
10800 training images. We accomplished this by rotating each
original training image by 12 angles computed in regular
increments from 0° to 330°. For feature extraction from
AlexNet, we use the fc6 layer that experimentally showed
better performance than the others (this layer was selected in
other computer vision problems as well [70]). In the case of
GoogleNet, we achieved a better performance using an incep-
tion layer for feature extraction. In particular, our best results
were achieved using the layer called inception_4b/output. In
the KNN approach, we use the nearest neighbor, i.e., k = 1. In
this experiment, the convolutional networks were pre-trained,
that means we only need to extract the deep features of the
training images: for AlexNet and GoogleNet the computational
time for this task was 5.4 min. For the testing stage, the
computational time per testing image was 40ms for AlexNet
and 67ms for GoogleNet on a simple GPU (GT 730).
Baseline methods: The details of the four classifiers used
as baseline methods (SVM, AdaBoost and SRC) are give. In
the case of SVM, we use the LIBSVM library [71] using
a linear kernel with default parameters; as for AdaBoost we
use a AdaBoost.M2 classifier, with 10 iterations and default
parameters, using the implementation in the toolbox Balu
[69]; for SRC we use a personal implementation based on
the SPAMS library®> with A = 0,15 and other parameters as
default. For the baseline methods SVM, AdaBoost and SRC,

5SPArse Modeling Software available on http:/spams-devel.gforge.inria.fr


http://spams-devel.gforge.inria.fr

the computational time was respectively 8, 24 and 1 min for
the training stage and about 0.35s, 0.07s, and 345s per testing
image on a Mac Mini Server OS X 10.10.1, processor 2.6
GHz Intel Core i7 with 4 cores and memory of 16GB RAM
1600 MHz DDR3.

IV. CONCLUSIONS

This paper attempts to make a contribution to the field of
object recognition in X-ray testing by evaluating ten computer
vision strategies. The four main contributions of this paper are
the following.

1) We proposed a new dataset that can be used in com-
puter vision techniques for X-ray testing in baggage
inspection. We defined three threat objects: guns, ninja
stars and razor blades and a negative class (classes Gun,
Shuriken, Blade and Others respectively). Totally, the
dataset has 1950 X-ray images. The dataset is public
and can be used for free of charge, for research and
educational purposes.

2) We defined an experimental protocol with 900 X-ray
images for training, 350 for validation and 700 for
testing purposes. In addition, two recognition problems
were formulated: i) four-class classification, in which
a classifier must identify one of the four classes (Gun,
Shuriken, Blade and Others), and ii) three detections,
in which three detectors must be designed in order to
recognize the target classes (Gun, Shuriken and Blade).

3) We proposed two new computer vision methods that
have been developed by integrating well-known com-
puter vision algorithms (see BoW in Section II-A and
Sparse KNN in Section II-B). In addition, we explained
the rest of the methods briefly providing the relevant
references for further information.

4) We implemented and evaluated ten computer vision
techniques based on classic methods, bag-of-words,
sparse representations, codebooks and deep features.
To the best knowledge of the authors, this is the first
experiment in baggage inspection (and probably in X-
ray testing) that uses deep learning.

In our experiments, the highest recognition rate was
achieved by methods based on visual vocabularies and deep
features with more than 95% of accuracy. We strongly believe
that it is possible to design an automated aid for the human
inspection task using these computer vision algorithms.

As future work, it is possible to consider the integration
of shallow and deep learning, i.e., an ensamble of classifiers
with different kind of features. In addition, we will train our
own CNN using all the images from the GDXray database.
We believe, that a CNN trained with X-ray images (instead of
optical images) would lead to better results in X-ray testing.
In addition, we will consider new threat objects in our dataset
(e.g., knives and sizers).

ACKNOWLEDGMENTS

This work was supported by Fondecyt Grant No. 1161314
from CONICYT, Chile.

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

G. Zentai, “X-ray imaging for homeland security,” IEEE International
Workshop on Imaging Systems and Techniques (IST 2008), pp. 1-6, Sept.
2008.

E. Parliament, “Aviation security with a special focus on security
scanners,” European Parliament Resolution (2010/2154(INI)), pp. 1-10,
Oct. 2012.

A. Bolfing, T. Halbherr, and A. Schwaninger, “How image based factors
and human factors contribute to threat detection performance in X-
ray aviation security screening,” in HCI and Usability for Education
and Work, ser. Lecture Notes in Computer Science, A. Holzinger, Ed.
Springer Berlin Heidelberg, 2008, vol. 5298, pp. 419-438.

A. Schwaninger, A. Bolfing, T. Halbherr, S. Helman, A. Belyavin, and
L. Hay, “The impact of image based factors and training on threat
detection performance in X-ray screening,” in Proceedings of the 3rd
International Conference on Research in Air Transportation, ICRAT
2008, 2008, pp. 317-324.

G. Blalock, V. Kadiyali, and D. H. Simon, “The Impact of Post-9/11
Airport Security Measures on the Demand for Air Travel,” The Journal
of Law and Economics, vol. 50, no. 4, pp. 731-755, Nov. 2007.

S. Michel, S. Koller, J. de Ruiter, R. Moerland, M. Hogervorst, and
A. Schwaninger, “Computer-based training increases efficiency in X-
ray image interpretation by aviation security screeners,” in Security
Technology, 2007 41st Annual IEEE International Carnahan Conference
on, Oct 2007, pp. 201-206.

D. Mery, Computer Vision for X-Ray Testing. Springer, 2015.

V. Riffo and D. Mery, “Automated detection of threat objects using
Adapted Implicit Shape Model,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 46, no. 4, pp. 472-482, 2016.

D. Mery, E. Svec, and M. Arias, “Object recognition in baggage
inspection using adaptive sparse representations of x-ray images,” in
Proceedings of the Pacific Rim Symposium on Image and Video Tech-
nology (PSIVT 2015), 2015.

I. Uroukov and R. Speller, “A preliminary approach to intelligent x-ray
imaging for baggage inspection at airports,” Signal Processing Research,
2015.

D. Turcsany, A. Mouton, and T. P. Breckon, “Improving feature-
based object recognition for X-ray baggage security screening using
primed visualwords,” in IEEE International Conference on Industrial
Technology (ICIT 2013), 2013, pp. 1140-1145.

M. Bagtan, M. R. Yousefi, and T. M. Breuel, “Visual words on baggage
x-ray images,” in Computer analysis of images and patterns. Springer,
2011, pp. 360-368.

N. Zhang and J. Zhu, “A study of X-ray machine image local semantic
features extraction model based on bag-of-words for airport security,”
International Journal on Smart Sensing and Intelligent Systems, vol. 8,
no. 1, pp. 45-64, 2015.

D. Mery, “Inspection of Complex Objects Using Multiple-X-Ray
Views,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 1, pp.
338-347, 2015.

D. Mery, V. Riffo, I. Zuccar, and C. Pieringer, “Automated X-Ray Object
Recognition Using an Efficient Search Algorithm in Multiple Views,” in
Computer Vision and Pattern Recognition Workshops (CVPRW), 2013
IEEE Conference on. IEEE Computer Society, 2013, pp. 368-374.
V. Riffo and D. Mery, “Active X-ray testing of complex objects,” Insight-
Non-Destructive Testing and Condition Monitoring, vol. 54, no. 1, pp.
28-35, 2012.

T. Franzel, U. Schmidt, and S. Roth, “Object Detection in Multi-view
X-Ray Images,” Pattern Recognition, 2012.

A. Mouton, G. T. Flitton, and S. Bizot, “An evaluation of image
denoising techniques applied to CT baggage screening imagery,” in IEEE
International Conference on Industrial Technology (ICIT 2013). 1EEE,
2013.

G. Flitton, T. P. Breckon, and N. Megherbi, “A comparison of 3D interest
point descriptors with application to airport baggage object detection in
complex CT imagery,” Pattern Recognition, vol. 46, no. 9, pp. 2420-
2436, Sep. 2013.

N. Megherbi, J. Han, T. P. Breckon, and G. T. Flitton, “A comparison
of classification approaches for threat detection in CT based baggage
screening,” in Image Processing (ICIP), 2012 19th IEEE International
Conference on. 1EEE, 2012, pp. 3109-3112.

G. Flitton, A. Mouton, and T. P. Breckon, “Object classification in
3D baggage security computed tomography imagery using visual code-
books,” Pattern Recognition, vol. 48, no. 8, pp. 2489-2499, Aug. 2015.



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

A. Mouton and T. P. Breckon, “Materials-based 3D segmentation of
unknown objects from dual-energy computed tomography imagery in
baggage security screening,” Pattern Recognition, vol. 48, no. 6, pp.
1961-1978, Jun. 2015.

R. A. Quinn and C. C. Sigl, Radiography in modern industry. Eastman
Kodak, 1980.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-
Fei, “ImageNet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

T. Poggio and S. Edelman, “A network that learns to recognize 3D
objects,” Nature, 1990.

K. Mikolajezyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, no. 10, pp. 1615-1630, Oct. 2005.

D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
Nov. 2004.

H. Bay, “SUREF: speeded up robust features,” in ECCV’06: Proceedings
of the 9th European conference on Computer Vision. Berlin, Heidelberg:
Springer-Verlag, May 2006, pp. 404-417.

L. Shen, C. J. Jiang, and G. J. Liu, “Satellite objects extraction
and classification based on similarity measure,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 46, no. 8, pp. 1148-1154,
Aug 2016.

J. Sivic and A. Zisserman, “Efficient Visual Search of Videos Cast
as Text Retrieval,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 4, pp. 591-606, 2009.

B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization
and segmentation with an implicit shape model,” in Workshop on
statistical learning in computer vision, ECCV, no. 5, 2004, p. 7.

Y. L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level
features for recognition,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. 1EEE, 2010, pp. 2559-2566.

I. ToSi¢ and P. Frossard, “Dictionary Learning,” Signal Processing
Magazine, IEEE, vol. 28, no. 2, pp. 27-38, Mar. 2011.

L. Bo, K. Lai, X. Ren, and D. Fox, “Object recognition with hierar-
chical kernel descriptors,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 1729-1736.

K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Fisher
vector faces in the wild.” in BMVC, vol. 2, no. 3, 2013, p. 4.

R. Arandjelovic and A. Zisserman, “All about vlad,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 1578-1585.

J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 1031-1044, 2010.

J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, 2009, pp. 1794-1801.

A. Thomas, L. Van Gool, T. Tuytelaars, V. Ferrari, B. Leibe, and
B. Schiele, “Towards Multi-View Object Class Detection,” in CVPR
’06: Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. — IEEE Computer Society,
Jun. 2006.

H. Su, S. Savarese, M. Sun, and L. Fei-Fei, “Learning a dense multi-
view representation for detection, viewpoint classification and synthesis
of object categories,” in Computer Vision, 2009 IEEE 12th International
Conference on. 1EEE, 2009, pp. 213-220.

V. Ferrari, T. Tuytelaars, and L. Van Gool, “Simultaneous object
recognition and segmentation from single or multiple model views,”
International Journal of Computer Vision, vol. 67, no. 2, pp. 159-188,
2006.

S. Savarese and L. Fei-Fei, “3D generic object categorization, localiza-
tion and pose estimation,” in Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on. IEEE, 2007, pp. 1-8.

J. Liebelt and C. Schmid, “Multi-view object class detection with a 3D
geometric model,” in Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, 2010, pp. 1688-1695.

M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Robust tracking-by-detection using a detector confidence
particle filter,” in Computer Vision, 2009 IEEE 12th International
Conference on. 1EEE, 2009, pp. 1515-1522.

Y. Cheng, R. Cai, X. Zhao, and K. Huang, “Convolutional fisher kernels
for rgb-d object recognition,” in 3D Vision (3DV), 2015 International
Conference on. 1EEE, 2015, pp. 135-143.

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
(54

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

W. J. Beksi and N. Papanikolopoulos, “Object classification using
dictionary learning and rgb-d covariance descriptors,” in 2015 [EEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2015, pp. 1880-1885.

R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng,
“Convolutional-recursive deep learning for 3d object classification,” in
Advances in Neural Information Processing Systems, 2012, pp. 665-673.
C. Aytekin, Y. Rezaeitabar, S. Dogru, and I. Ulusoy, “Railway fastener
inspection by real-time machine vision,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 45, no. 7, pp. 1101-1107, 2015.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

Y. LeCun, L. Bottou, and Y. Bengio, “Gradient-based learning applied
to document recognition,” in Proceedings of the Third International
Conference on Research in Air Transportation, 1998.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks.” NIPS, pp. 1106-1114, 2012.
A. Vedaldi and K. Lenc, “MatConvNet — Convolutional Neural Networks
for Matlab (http://www.vlfeat.org/),” 2014.

D. Mery, V. Riffo, U. Zscherpel, G. Mondragén, I. Lillo, I. Zuccar,
H. Lobel, and M. Carrasco, “GDXray: The database of X-ray images for
nondestructive testing,” Journal of Nondestructive Evaluation, vol. 34,
no. 4, pp. 1-12, 2015.

C.-F. Tsai, “Bag-of-words representation in image annotation: A review,”
ISRN Artificial Intelligence, vol. 2012, 2012.

M. Heikkild, M. Pietikdinen, and C. Schmid, “Description of interest
regions with local binary patterns,” Pattern recognition, vol. 42, no. 3,
pp. 425-436, 2009.

M. A. W. J. A. Hartigan, “Algorithm as 136: A k-means clustering
algorithm,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 28, no. 1, pp. 100-108, 1979. [Online]. Available:
http://www.jstor.org/stable/2346830

A. Liaw and M. Wiener, “Classification and regression by randomforest,”
R news, vol. 2, no. 3, pp. 18-22, 2002.

A. Dixit, “Adaptive kmeans clustering for color and gray image.
(http://www.mathworks.com/matlabcentral/fileexchange/45057-
adaptive-kmeans-clustering-for-color-and-gray-image),” Matlab Central,
File Exchange, January 2014.

T. RiickstieB, C. Osendorfer, and P. van der Smagt, “Sequential
feature selection for classification,” in Al 2011: Advances in Artificial
Intelligence, ser. Lecture Notes in Computer Science, D. Wang
and M. Reynolds, Eds. Springer Berlin Heidelberg, 2011, vol.
7106, pp. 132-141. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-25832-9_14

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning
for matrix factorization and sparse coding,” J. Mach. Learn.
Res., vol. 11, pp. 19-60, Mar. 2010. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1756006.1756008

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227, 2009.
B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” International Journal of
Computer Vision, vol. 77, no. 1-3, pp. 259-289, 2008.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in CVPR 2015, 2015.

R. Arandjelovic and A. Zisserman, “Three things everyone should know
to improve object retrieval,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, June 2012, pp. 2911-2918.

U. M. Fayyad and K. B. Irani, “The attribute selection problem in
decision tree generation,” in AAAI 1992, pp. 104-110.

A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” 2008, http://www.vlfeat.org/.

D. Mery, “BALU: A Matlab toolbox for computer vision, pattern recog-
nition and image processing (http://dmery.ing.puc.cl/ index.php/balu),”
2011.

A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes
for image retrieval,” in Computer Vision ECCV 2014, ser. Lecture Notes
in Computer Science, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds. Springer International Publishing, 2014, vol. 8689, pp. 584-599.


http://arxiv.org/abs/1512.03385
http://www.jstor.org/stable/2346830
http://dx.doi.org/10.1007/978-3-642-25832-9_14
http://dx.doi.org/10.1007/978-3-642-25832-9_14
http://dl.acm.org/citation.cfm?id=1756006.1756008
http://dl.acm.org/citation.cfm?id=1756006.1756008

[71] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1-27:27, 2011, software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

Domingo Mery (M’01) received a M.Sc. degree in
Electrical Engineering from the Technical University
of Karlsruhe (1992) and a Ph.D. with distinction
from the Technical University of Berlin (2000). He
was a research scientist at the Institute for Mea-
surement and Automation Technology at the Tech-
nical University of Berlin with the collaboration of
YXLON X-Ray International. He has received schol-
arships from the Konrad Adenauer Foundation and
the German Academic Exchange Service (DAAD).
In 2001, he served as an Associate Researcher in
the Department of Computer Engineering at the Universidad de Santiago,
Chile. During 2014 he was a Visiting Professor with the University of Notre
Dame. He is currently full professor with the Department of Computer Science
at the Pontificia Universidad Catlica de Chile, where he served as Chair
from 2005 to 2009. His research interests include image processing for fault
detection in aluminum castings, X-ray imaging, real-time programming, and
computer vision. He is the author of 60 technical SCI publications and over 70
conference papers. He is Local Co-chair of ICCV2015 (to be held in Santiago
de Chile). He served as General Program Chair of PSIVT2007, Program Chair
of PSIVT2009, and General Co-chair of PSIVT2011 (Pacific-Rim Symposium
on Image and Video Technology) and the 2007 Ibero-American Congress on
Pattern Recognition. He received the Ron Halmshaw Award (2005, 2012) and
John Green Award (2013) from British Institute of Non-destructive Testing,
which was established to recognize the best papers published in the Insight
Journal on Industrial Radiography. He received the Best Paper Award at
the International Workshop on Biometrics in conjunction with the European
Conference on Computer Vision (ECCV 2014).

Erick Svec received the B.S. and the M.S. degree
in Computer Science from the Catholic University
of Chile, in Santiago e Chile, in 2016. His current
research interests include pattern recognition and
computer vision for X-ray testing.

Marco Arias He received the B.S. and the M.S.
degree in Computer Science from the Catholic Uni-
versity of Chile in 2014 and 2016 respectively. His
current research interests include pattern recognition,
machine learning and computer vision for X-ray
testing.

Vladimir Riffo He received a BSc Eng degree
in Electronic Engineering from the Universidad de
Antofagasta, Chile in 1998 and a MEng degree from
the Pontificia Universidad Catlica de Chile (PUC) in
2011. He is currently pursuing his doctoral studies at
that institution. He is an Associate Professor in the
Department of Computer Engineering and Computer
Science at the Universidad de Atacama (UDA). His
main research interests include pattern recognition,
object detection, computer vision using multi-views
and X-ray testing, as well as ways to combine those
approaches. He is a past recipient of a scholarship from the ‘Comision
Nacional de Investigacin Cientfica y Tecnolgica’ (CONICYT) and is a Fellow
with GRIMA, the Machine Intelligence Group at the Pontificia Universidad
Catlica de Chile. He has received the Ron Halmshaw Award (2012) and
the John Green Award (2013) from the British Institute for Non-destructive
Testing, which was established for the best papers published in Insight Journal
on Industrial Radiography.

Jose M. Saavedra received his Ph.D. degree in
Computer Science from University of Chile in 2013.
He also received a MSc in Computer Science from
the Universidad Nacional de Trujillo , Per. Currently,
he is a computer vision researcher at Orand and co-
founder at Impresee, Chile. Jos M. Saavedra is also a
part-time professor of the Department of Computer
Science, University of Chile. His areas of interest
includes pattern recognition, computers vision and
machine learning.

Sandipan Banerjee received his BS degree from
the National Institute of Technology, Durgapur in
India in 2012 and is currently pursuing a PhD degree
from the University of Notre Dame in the USA.
His current research interests include deep learning
based face recognition, artificial face synthesis and
synthetic facial aging.


http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Computer vision methods
	Bag of Words (BoW)
	KNN based in sparse reconstruction object recognition (Sparse KNN)
	Adaptive Implicit Shape Model (AISM)
	Adaptive Sparse Representations (XASR+)
	Deep Learning
	Baseline Methods

	Experimental Results
	Experimental protocol
	Four-Class classification
	Detection of three threat objects (three binary classifiers)

	Results and discussion
	Practical considerations

	Conclusions
	References
	Biographies
	Domingo Mery
	Erick Svec
	Marco Arias
	Vladimir Riffo
	Jose M. Saavedra
	Sandipan Banerjee


